Audio source separation with deep neural networks using the dropout algorithm
نویسندگان
چکیده
A method based on Deep Neural Networks (DNNs) and time-frequency masking has been recently developed for binaural audio source separation. In this method, the DNNs are used to predict the Direction Of Arrival (DOA) of the audio sources with respect to the listener which is then used to generate soft time-frequency masks for the recovery/estimation of the individual audio sources. In this paper, an algorithm called ‘dropout’ will be applied to the hidden layers, affecting the sparsity of hidden units activations: randomly selected neurons and their connections are dropped during the training phase, preventing feature co-adaptation. These methods are evaluated on binaural mixtures generated with Binaural Room Impulse Responses (BRIRs), accounting a certain level of room reverberation. The results show that the proposed DNNs system with randomly removed neurons is able to achieve higher SDRs performances compared to the baseline method without the dropout algorithm.
منابع مشابه
Multi-Resolution Fully Convolutional Neural Networks for Monaural Audio Source Separation
In deep neural networks with convolutional layers, each layer typically has fixed-size/single-resolution receptive field (RF). Convolutional layers with a large RF capture global information from the input features, while layers with small RF size capture local details with high resolution from the input features. In this work, we introduce novel deep multi-resolution fully convolutional neural...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملDeep neural network based audio source separation
Audio source separation aims to extract individual sources from mixtures of multiple sound sources. Many techniques have been developed such as independent component analysis, computational auditory scene analysis, and non-negative matrix factorisation. A method based on Deep Neural Networks (DNNs) and time-frequency (T-F) masking has been recently developed for binaural audio source separation...
متن کاملMusic Remixing and Upmixing Using Source Separation
Current research on audio source separation provides tools to estimate the signals contributed by different instruments in polyphonic music mixtures. Such tools can be already incorporated in music production and post-production workflows. In this paper, we describe recent experiments where audio source separation is applied to remixing and upmixing existing mono and stereo music content. 1. AU...
متن کاملRemixing musical audio on the web using source separation
Research in audio source separation has progressed a long way, producing systems that are able to approximate the component signals of sound mixtures. In recent years, many efforts have focused on learning time-frequency masks that can be used to filter a monophonic signal in the frequency domain. Using current web audio technologies, time-frequency masking can be implemented in a web browser i...
متن کامل